RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION

GATEWAY SCIENCE

SCIENCE B

Unit B711: Science modules B1, C1, P1 (Foundation Tier)

Candidates answer on the question paper A calculator may be used for this paper

OCR Supplied Materials:
None
Duration: 1 hour 15 minutes

Other Materials Required:

- Pencil
- Ruler (cm/mm)

Candidate		Candidate	
Forename		Surname	

Centre Number						Candidate Number				

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- Your quality of written communication is assessed in questions marked with a pencil ($)$.
- A list of equations can be found on page 2.
- The Periodic Table can be found on the back page.
- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 75 .
- This document consists of $\mathbf{2 8}$ pages. Any blank pages are indicated.

Examiner's Use Only:			
1		9	
2		10	
3		11	
4		12	
5		13	
6		14	
7		15	
8		16	
Total			

Turn over

EQUATIONS

energy $=$ mass \times specific heat capacity \times temperature change energy $=$ mass \times specific latent heat
efficiency $=\frac{\text { useful energy output }(\times 100 \%)}{\text { total energy input }}$
wave speed $=$ frequency \times wavelength
power $=$ voltage \times current
energy supplied $=$ power \times time
average speed $=\frac{\text { distance }}{\text { time }}$
distance $=$ average speed \times time

$$
s=\frac{(u+v)}{2} \times t
$$

acceleration $=\frac{\text { change in speed }}{\text { time taken }}$
force $=$ mass \times acceleration
weight $=$ mass \times gravitational field strength
work done $=$ force \times distance
power $=\frac{\text { work done }}{\text { time }}$
power $=$ force \times speed
$K E=1 / 2 m v^{2}$
momentum $=$ mass \times velocity
force $=\frac{\text { change in momentum }}{\text { time }}$
GPE $=m g h$
$m g h=1 / 2 m v^{2}$
resistance $=\frac{\text { voltage }}{\text { current }}$

Answer all the questions.

Section A - Module B1

1 Deb is thirteen years old.
Her doctor has told her that she must eat enough protein each day.
She can calculate her estimated average requirement (EAR) for protein in grams using the formula:

$$
\text { EAR in } \mathrm{g}=0.6 \times \text { body mass in } \mathrm{kg}
$$

Deb has a mass of 58 kg .
Look at the information about how much protein Deb eats in one day.

food	protein content in grams
breakfast cereal	5.0
salad sandwich	8.0
macaroni cheese pasta	13.9
rice pudding	3.0
tinned peaches	0.5

Using the formula for EAR, should Deb be concerned about the amount of protein she eats? Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad

2 Chaminda visits the doctor because he feels ill.
The doctor tells him:

A little while ago, some bacteria entered your body.
Your body will soon make antibodies to kill the bacteria.
To help, I will give you some medicine. This medicine has been thoroughly tested on animals first.
(a) Describe how Chaminda's body normally defends against bacteria.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Chaminda is concerned that the medicine had been tested on animals.

Suggest what his concerns might be.
\qquad
\qquad
\qquad

3 The diagram shows parts of a human eye.

(a) Finish labelling the diagram.

Choose the labels from this list.
blindspot iris optic nerve pupil retina
(b) (i) Look at the list of actions.

The eye is the receptor for all these actions.
Which of the actions are reflexes?
Put a tick (\checkmark) in the box next to each reflex actions.
Put a cross (\mathbf{X}) in the box next to each of the actions which are not reflex actions.

Automatically blinking when an object is thrown towards your face.

Changing the shape of your pupil without thinking in bright light.

Turning on the light when it gets dark.
(ii) Some reflex actions slow down as people get older.

Why might this be a problem?
\qquad

4 Tobacco smoke contains chemicals and can affect the lungs.
(a) One of these chemicals is an addictive substance.

Write down the name of this chemical.
\qquad
(b) The graph shows how well the lungs work at different ages. This is shown for two groups of people.

One group is heavy smokers. The other group is non-smokers.
The dotted line shows the possible effect of stopping smoking at age 48.

Doug is a 48 year-old heavy smoker.

(i) Doug decides to give up smoking.

What difference will this make to the age at which lung damage is likely to make him disabled?
\qquad
\qquad
(ii) Explain this difference in the age at which Doug would become disabled. Use your knowledge of the effect of smoking on the lungs in your answer.
\qquad
\qquad
\qquad

5 Basil is a gardener.
He keeps a diary of the work that he does in his garden.
Here is part of his diary.

27 ${ }^{\text {th }}$ September

Today I decided to grow some new geranium plants.
I cut small shoots off the plants and dipped them into a powder to make them grow roots. I then planted the shoots in some soil.

(a) Basil dips the geranium shoots into a powder containing plant hormones before planting them.

Explain why.
\qquad
(b) Basil thinks that his geranium shoots grow towards light.

He does an experiment to test this.

Method

I left one plant locked in a dark cupboard for one week.
I left another plant on my desk in a classroom for two weeks and watered it every day.

Look at the diagrams of the plants at the end of the experiment.

light

dark

Based on his evidence Basil concludes that geranium shoots do grow towards the light, because the plant in the light grew better.

Is Basil right to draw this conclusion?
Evaluate his method and his conclusion.
The quality of written communication will be assessed in your answer to this question.
\qquad

Section B - Module C1

6 This question is about carbon compounds.
Look at the displayed formulas.

methanol

ethene

poly(chloroethene)
0
II
C
0
carbon dioxide
(a) Which compound is found in liquefied petroleum gases (LPG)?

Choose from the displayed formulas.
\qquad
(b) How many atoms are present in the formula for propane?
\qquad
(c) Write down the names of the two elements present in a hydrocarbon.

7 Phil is heating his house.

©Robert Brook/Science Photo Library
(a) Phil decides to use natural gas (methane) to heat his house.

Look at the word equation.
It shows what happens during the complete combustion of methane.
methane + oxygen \longrightarrow... + water

Finish the word equation.
(b) Phil uses a gas water heater.

He notices that the water heater is producing lots of soot.
It is important that he gets the gas heater serviced. Explain why.
\qquad
\qquad
\qquad
(c) Phil wants to heat his greenhouse.

He decides to test four liquid fuels to see which fuel is the best to use.
Look at the diagram.
It shows the apparatus he uses to measure the energy given out by these fuels.

Look at the table. It shows his results.

fuel	temperature of water at start in ${ }^{\circ} \mathbf{C}$	temperature of water at end in ${ }^{\circ} \mathbf{C}$	cost of fuel burned in pence
A	15	30	1.0
B	22	42	2.0
C	20	25	0.5
D	20	30	1.5

Phil decides to use fuel \mathbf{C} to heat his greenhouse.
Evaluate if this is a sensible choice.
\qquad
\qquad
\qquad
\qquad
\qquad

8 This question is about removing nail varnish.
(a) Some solvents can dissolve nail varnish.

Lesley investigates the solubility of different nail varnishes.
Look at the table of the results of her investigation.

solvent	colour of nail varnish				
	black	blue	purple	red	white
ethanol	S	I	S	।	।
ethyl ethanoate	S	S	S	S	S
petrol	S	S	I	S	।
propanone	S	S	S	S	S
water	I	I	I	I	I

I = insoluble and $\mathrm{S}=$ soluble
(i) Which solvent did not dissolve any of the nail varnishes?
\qquad
(ii) Why is ethyl ethanoate a better solvent for nail varnishes than petrol?
\qquad
(b) Finchfield Pharmaceuticals make a new nail varnish remover.

It must be tested before it can be approved for use by humans.
Give two examples of risks that should be tested for.
\qquad
\qquad
\qquad
\qquad

9 (a) Look at the list. It shows some of the gases found in clean air.

> oxygen
> carbon dioxide
> water vapour

Write down the name of one other gas present in clean air.
\qquad
(b) Sulfur dioxide causes air pollution.

Write about the effects of sulfur dioxide pollution.
\qquad
\qquad
\qquad
\qquad
(c) Some people throw away plastic bottles. This can cause a litter problem.

Explain why throwing away plastic bottles can cause problems.
\qquad
\qquad
\qquad
\qquad
\qquad

10 Cracking is a process that is done in an oil refinery.
Look at the table of information about different fractions found in crude oil.
The fractions contain hydrocarbon molecules.
The fractions at the top of the table have smaller molecules than the fractions at the bottom.

fraction	amount supplied in crude oil in tonnes	amount needed in tonnes
liquefied petroleum gases	13	12
petrol	10	15
diesel	10	18
paraffin	25	20
heating oil	20	25
bitumen	22	10

Crude oil contains too much of some fractions and not enough of other fractions.
The manager of the oil refinery needs to make some decisions.
She needs to decide the conditions to use and the fractions to be cracked.
What conditions should the manager use and how does she use the information in the table to decide which fractions should be cracked?

The quality of written communication will be assessed in your answer to this question.
\qquad

Section C - Module P1

11 Asif has an old gas fire that heats the living room of his house.
(a) The diagram shows how much of the energy in the gas actually heats the room.

The total energy input is 20000 J .
Complete the Sankey diagram.
(b) Asif changes his old gas fire for new one because he thinks a more efficient fire will save him money.

Look at the data in the table about new gas fires.

model of gas fire	efficiency (\%)	cost to buy gas fire in $£$	1 year saving on fuel costs compared to old gas fire in $£$
aspect	76	900	80
concept	74	600	70
firewell	70	750	50
moment	69	475	45
tinder	74	850	70

Asif plans to keep the new gas fire for 10 years.
The salesman recommends that Asif buys the model with the highest efficiency.
Asif considers the payback time for each gas fire and the saving on fuel cost.
Which model of gas fire should he choose?
answer \qquad

Explain your answer.
\qquad
\qquad
\qquad

12 This question is about waves.
(a) A water wave is a transverse wave.

Look at the diagram of a transverse wave.

Use the letters on the diagram to identify the wavelength of this wave.

The wavelength is
(b) (i) The following measurements of some water waves on a lake were recorded.

> 4 waves pass a point in 2 seconds,
> the wavelength $=1.25 \mathrm{~m}$,
> the depth of water is unknown.
> Calculate the speed of this water wave.
\qquad
\qquad
\qquad
(ii) The speed of water waves varies with the depth of the lake.

Look at the information in the table.
It shows the speed of waves as they cross the lake.

depth of water $\mathbf{i n} \mathbf{m}$	speed of wave $\mathbf{i n} \mathbf{m} / \mathbf{s}$
1.8	3.2
0.9	2.7
0.3	1.7

Use your answer from question (b) to estimate the depth of water in which the measurements were made.
\qquad

13 Energy losses in the home can be reduced by energy saving measures.
One measure is to put foam covered with shiny foil as insulation in the cavity.

direction of energy loss

Describe how energy is lost through the wall from the inside to the outside and how the insulation reduces the different types of energy loss.

The quality of written communication will be assessed in your answer to this question.
\qquad

14 This question is about radiation from the Sun.
Radiation is harmful.
One of the harmful effects of radiation is increased risk of cataracts.
Write about one other harmful effect of radiation from the Sun and different ways to reduce the risk of damage.
\qquad
\qquad
\qquad
\qquad
\qquad

15 This question is about using waves and signals.
(a) Infrared sensors are used in burglar alarms.

Look at the diagram.

Why does this sensor detect a burglar but not a curtain moving in the wind?
\qquad
\qquad
\qquad
(b) (i) Look at the digital signal.

Write the code for this signal in the boxes below.

(ii) Here is another signal.

How can you tell this is not a digital signal?
\qquad [1]
(c) Many years ago it was difficult to send messages long distances.

A runner had to carry a written message.
Technology has developed so that light can be used to send messages.
One example of such technology is optical fibres.
Describe one advantage and one disadvantage of using light to send messages.
\qquad
\qquad
\qquad

16 This question is about heating a solid.
The solid is warmed.
Look at the graph.

(a) Why does the temperature remain constant in part \mathbf{B} of the graph?
\qquad
(b) Explain why the temperature goes up in part E after staying constant in part D.
\qquad
\qquad
\qquad

END OF QUESTION PAPER

PLEASE DO NOT WRITE ON THIS PAGE

$O C R^{\text {T }}$

RECOGNISING ACHIEVEMENT

Copyright Information:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

PERIODIC TABLE

Key

7	9
$\mathbf{L i}$	$\mathbf{B e}$
lithium	beryllium

$\mathbf{1}$
\mathbf{H}
nydrogen
1

3
4
6
7
relative atomic mass atomic symbol atomic (proton) number

3	4
23	24
$\mathbf{N a}$	$\mathbf{M g}$
sodium	
11	magnesium 12

39	40
	Ca calcium

$\begin{gathered} 85 \\ \text { Rb } \\ \text { rubidium } \\ 37 \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Sr} \\ \text { strontium } \\ 38 \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{Y} \\ \text { y ytrium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ \text { Zr } \\ \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} 93 \\ \text { Nb } \\ \text { niobium } \\ 41 \end{gathered}$	96Mo molyddenum 42	$\begin{gathered} {[98]} \\ \text { Tc } \\ \text { technetium } \\ 43 \end{gathered}$	$\begin{gathered} 101 \\ \text { Ru } \\ \text { ruthenium } \\ 44 \end{gathered}$	$\begin{gathered} 103 \\ \text { Rh } \\ \text { rhodium } \\ 45 \end{gathered}$	$\begin{gathered} 106 \\ \text { Pd } \\ \text { palladium } \\ 46 \end{gathered}$	$\begin{gathered} 108 \\ \text { Ag } \\ \text { siver } \\ 47 \end{gathered}$	$\begin{gathered} 112 \\ \text { Cd } \\ \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} 115 \\ \text { In } \\ \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & 119 \\ & \text { Sn } \\ & \text { tin } \\ & 50 \end{aligned}$	$\begin{gathered} 122 \\ \text { Sb } \\ \text { antimony } \\ 51 \end{gathered}$	$\begin{gathered} 128 \\ \mathrm{Te} \\ \text { tellurium } \\ 52 \end{gathered}$	$\begin{gathered} 127 \\ \text { I } \\ \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} 131 \\ \text { Xe } \\ \text { xenon } \\ 54 \end{gathered}$
$\begin{gathered} 133 \\ \text { Cs } \\ \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} 137 \\ \mathrm{Ba} \\ \text { barium } \\ 56 \end{gathered}$	$\begin{gathered} 139 \\ \text { La* } \\ \text { lanthanum } \\ 57 \end{gathered}$	$\begin{gathered} 178 \\ \text { Hf } \\ \text { hafnium } \\ 72 \end{gathered}$	$\begin{gathered} 181 \\ \mathbf{T a} \\ \text { tantalum } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ \mathbf{W} \\ \text { tungsten } \\ 74 \end{gathered}$	186 Re rhenium 75	$\begin{gathered} 190 \\ \text { Os } \\ \text { osmium } \\ 76 \end{gathered}$	$\begin{gathered} 192 \\ \text { Ir } \\ \text { iridium } \\ 77 \end{gathered}$	$\begin{gathered} 195 \\ \text { Pt } \\ \text { platinum } \\ 78 \end{gathered}$	197 Au gold 79	$\begin{gathered} 201 \\ \begin{array}{c} \mathrm{Hg} \\ \text { mercury } \\ 80 \end{array} \end{gathered}$	$\begin{gathered} 204 \\ \text { Tl } \\ \text { thallium } \\ 81 \end{gathered}$	$\begin{gathered} 207 \\ \text { Pb } \\ \text { lead } \\ 82 \end{gathered}$	$\begin{gathered} 209 \\ \mathbf{B i} \\ \text { bismuth } \\ 83 \end{gathered}$	$\begin{gathered} {[209]} \\ \text { Po } \\ \text { polonium } \\ 84 \end{gathered}$	$\begin{gathered} {[210]} \\ \text { At } \\ \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} {[222]} \\ \mathbf{R n} \\ \text { radon } \\ 86 \end{gathered}$
$\begin{gathered} {[223]} \\ \text { francium } \\ 87 \end{gathered}$	$\begin{gathered} {[226]} \\ \text { Ra } \\ \text { radium } \\ 88 \end{gathered}$	$\begin{gathered} {[227]} \\ \mathbf{A c}_{\text {actinum }} \\ 89 \end{gathered}$	$\begin{gathered} {[261]} \\ \text { Rf } \\ \text { rutherfordium } \\ 104 \end{gathered}$	$\begin{gathered} {[262]} \\ \text { Db } \\ \text { dubnium } \\ 105 \end{gathered}$	$\begin{gathered} {[266]} \\ \mathrm{Sg} \\ \text { seaborgium } \\ 106 \end{gathered}$	$\begin{gathered} {[264]} \\ \text { Bh } \\ \text { bohrium } \\ 107 \end{gathered}$	$\begin{gathered} {[277]} \\ \text { Hs } \\ \text { hassium } \\ 108 \end{gathered}$	$\begin{gathered} {[268]} \\ \mathrm{Mt} \\ \text { meitnerium } \\ 109 \end{gathered}$	$\begin{gathered} {[271]} \\ \text { Ds } \\ \text { darmstadium } \\ 110 \end{gathered}$	$\begin{gathered} {[272]} \\ \mathbf{R g} \\ \text { roentgenium } \\ 111 \end{gathered}$	Elements with atomic numbers 112-116 have been reported but not fully authenticated						

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

SPECIMEN F

GENERAL CERTIFICATE OF SECONDARY EDUCATION
GATEWAY SCIENCE

Unit B711: Science modules B1, C1, P1 (Foundation Tier)

MARK SCHEME

Duration: 1 hours 15 minutes

MAXIMUM MARK 75

Guidance for Examiners

Additional guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, eg mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:

I = alternative and acceptable answers for the same marking point
(1) = separates marking points
not/reject = answers which are not worthy of credit
ignore = statements which are irrelevant - applies to neutral answers
allow/accept = answers that can be accepted
(words) = words which are not essential to gain credit
words = underlined words must be present in answer to score a mark
ecf = error carried forward
AW/owtte = alternative wording
ora = or reverse argument
eg mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1)
work done = 0 marks
work done lifting = 1 mark
change in potential energy $=0$ marks
gravitational potential energy $=1$ mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.

Question		Expected answers	Marks	Additional guidance
$\mathbf{2}$	(a)	skin provides a barrier / AW (1) clotting blood prevents entry (at cuts) (1) trapped by mucus in airways (1) killed by (hydrochloric) acid in stomach (1)	4	
	(b)	ethical worries concerning animal rights (1) concerns about different effects on animals compared with humans (1)	2	
	Total	$\mathbf{6}$		

Question		Expected answers	Marks	Additional guidance	
$\mathbf{3}$	(a)	pupil (1) optic nerve (1)	2		
	(b)	(i)	\checkmark \checkmark X	1	all three correct to score the mark
		(ii)	because reflexes are protective (so if they are slower there is) more chance of injury / AW (1)	1	
		Total	4		

| Question | | Expected answers | Marks | Additional guidance |
| :---: | :---: | :--- | :--- | :---: | :---: |
| $\mathbf{4}$ | (a) | nicotine (1) | 1 | |
| | (b) | (i)older / takes longer to become disabled (1)
 20 years extra (before becoming disabled) (1) | 2 | |
| | (ii)because smoking causes damage to cilia which means
 chemicals build up and cause cancer / emphysema (1)
 but giving up prevents further damage to cilia / less build-
 up of chemicals so reducing risk of cancer / emphysema
 (1) | 2 | answers must link giving up smoking to limiting lung
 damage and subsequent risk of disease in order to gain
 full credit | |
| | | Total | 5 | |

Question		Expected answers	Marks	Additional guidance
5	(a)	to make roots grow (faster) (1)	1	
	(b)	Level 3 Answer thoroughly evaluates both conclusion and method, in terms of not testing directional growth, and applies knowledge of how to conduct this experiment to discuss in detail the flaws in the experimental method outlined including lack of unidirectional light and control of variables. All information in answer is relevant, clear, organised and presented in a structured and coherent format. Specialist terms are used appropriately. Few, if any, errors in grammar, punctuation and spelling. (5-6 marks) Level 2 A limited evaluation of conclusion and method, and applies knowledge of how to conduct this experiment to discuss specific flaws in the method including timing and watering. For the most part the information is relevant and presented in a structured and coherent format. Specialist terms are used for the most part appropriately. There are occasional errors in grammar, punctuation and spelling. (3-4 marks) Level 1 An incomplete answer, simple evaluation in terms of conclusion not right, applies knowledge to experimental method to identify method was not a 'fair test'. Answer may be simplistic. There may be limited use of specialist terms. Errors of grammar, punctuation and spelling prevent communication of the science. (1-2 marks) Level 0 Insufficient or irrelevant science. Answer not worthy of credit.	6	relevant points include: - Basil is not right to draw this conclusion based on his evidence evaluation of conclusion - idea that conclusion not valid / not based on evidence - because experiment did not test directional growth - experiment was testing whether plant grows in light or dark evaluation of method - not enough detail to allow method to be followed - reference to condition of unidirectional light required / idea that should have blocked out light from all but one direction - reference to not watering both batches equally - reference to not leaving them to grow for the same length of time - idea of not a 'fair test' - reference to not doing repeats / controlling variables - reference to variables that were not controlled eg size of plant at the start allow examples of how the experiment should have been done
		Total	7	

| Question | | Expected answers | Marks | Additional guidance |
| :--- | :--- | :--- | :---: | :---: | :--- |
| $\mathbf{6}$ | (a) | propane (1) | 1 | allow $\mathrm{C}_{3} \mathrm{H}_{8}$ |
| | (b) | 11 (1) | 1 | |
| | (c) | hydrogen and carbon (1) | 1 | not 'hydro and carbon'
 not C and H |
| | | Total | $\mathbf{3}$ | |

Question		Expected answers	Marks	Additional guidance	
$\mathbf{7}$	(a)	(b)	carbon dioxide (1) (idea that soot shows that incomplete combustion is happening (1) so poisonous carbon monoxide (may be being) formed / so less energy is being released (1)	2	allow CO_{2} not CO2 or CO^{2} or Co_{2} not carbon dioxide + heat
(c)	answers must be linked for 2 marks eg poisonous carbon monoxide may be being formed because incomplete combustion is happening shown by soot being made (2) allow less heat is produced (1)				
fuel C is a sensible choice because it is cheaper than all the others (1) evidence of calculation of temperature differences to conclude that fuel C is not a sensible choice because fuel B gives the largest temperature rise / ora (1) OR evidence of calculation of temperature rise per penny to conclude that fuel C is not a sensible choice because fuel A has the highest temperature rise for 1 pence of fuel burned / ora (2)	3	answers must link choice of fuel with evidence to gain credit			

Question		Expected answers	Marks	Additional guidance	
$\mathbf{8}$	(a)	(i)	water (1)	1	1
	(b)	(ii)	ethyl ethanoate dissolves more of the colours (1)	any two from: idea that nail varnish remover could irritate skin or nails or hands (1) toxicity / AW (1) does not react with water / sweat / perspiration (1)	2
	allow idea that could have harmful vapours (1)				
		Total	$\mathbf{4}$		

Question		Expected answers	Marks	Additional guidance			
$\mathbf{9}$	(a)	(b)	$\begin{array}{l}\text { nitrogen / helium / neon / argon / krypton (1) } \\ \text { sulfur dioxide causes acid rain (1) } \\ \text { which kills plants / kills fish / attacks stonework / corrodes metals } \\ (1)\end{array}$	2	allow idea that sulfur dioxide aggravates asthma (1)		
allow radon						$]$	(c)
:---							

Question		Expected answers	Marks	Additional guidance
11	(a)	12000 J heating the room (1) 8000 J wasted (1)	2	allow ecf for wasted energy if wasted + heating add up to 20 000 J
	(b)	concept (no mark) because concept is the only model where payback time is less than 10 years and this means that Asif saves most money ($£ 100$) over 10 years with the concept (2) OR because concept is the only model where payback time is less than 10 years / over 10 years Asif saves the most money with the concept (1)	2	concept not chosen or incorrect model chosen answer scores (0) allow correct use of figures eg paid $£ 600$ and get $£ 700$ back in savings at the end of 10 years (1) allow although aspect is more efficient / saves more on fuel each year, aspect costs more than the concept (1)
		Total	4	

Question		Expected answers	Marks	Additional guidance
$\mathbf{1 2}$	(a)		idea of distance between A and D (1)	1

Question		Expected answers	Marks	Additional guidance
13		Level 3 A detailed description of the three processes by which energy is transferred from inside to outside and how energy losses are reduced using cavity wall insulation. Applies knowledge of how inclusion of shiny foil reduces energy loss in the context of a cavity wall. All information in answer is relevant, clear, organised and presented in a structured and coherent format. Specialist terms are used appropriately. Few, if any, errors in grammar, punctuation and spelling. (5-6 marks) Level 2 Limited description of some processes by which energy is transferred, order from inside to outside may be confused, some reductions by cavity walls described but not linked to different forms of transfer. For the most part the information is relevant and presented in a structured and coherent format. Specialist terms are used for the most part appropriately. There are occasional errors in grammar, punctuation and spelling. Level 1 An incomplete description, naming some processes by which energy is transferred. Answer may be simplistic. There may be limited use of specialist terms. Errors of grammar, punctuation and spelling prevent communication of the science. Level 0 Insufficient or irrelevant science. Answer not worthy of credit.	6	relevant points include: - cavity wall insulation slows down the process of heat transfer - cavity wall insulation retains more heat inside the home - energy moves by conduction through the internal bricks - foam or air is a poor conductor/foam or air is a good insulator so energy transfer is reduced - air / bubbles trapped (in foam) reduces convection - reduces heat or energy radiated into cavity - inner silver foil surface reflects heat or IR back - outer silver foil surface emits less heat - energy moves by conduction through the external bricks accept cavity wall insulation reduces energy losses mainly by conduction and convection ignore heat escapes reject heat particles
		Total	6	

Question		Expected answers	Marks	Additional guidance
$\mathbf{1 4}$	sunburn / skin cancer / premature skin ageing (1) spend less time in the sunshine (1) use a higher factor sun cream/block (1)	3	allow excessive sun tan (1)	
	Total	$\mathbf{3}$		

Question			Expected answers	Marks	Additional guidance
15	(a)		infrared sensors are sensitive to heat, and can detect objects that are warmer than their surroundings (1) the burglar gives out body heat and so is warmer than the surroundings, and the curtain is not (1)	2	marking points in either order can gain credit 'infrared sensors detect body heat' alone is worth 1 mark ignore the curtain is not hot
	(b)	(i)	correct table $\begin{array}{llllllllll} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \tag{1} \end{array}$	1	
		(ii)	it has continuously varying values (1)	1	allow it is not only on or off / it is not only 0 or 1
	(c)		advantage: increased speed of communication compared to runner / digital signal used so easier to remove interference (1) disadvantage: idea of need for a code / need for technology to support use of light (at transmitter and receiver) (1)	2	allow faster / quicker communication (1) allow higher level answers above target grade eg allows use of multiplexing (1)
			Total	6	

Question		Expected answers	Marks	Additional guidance
$\mathbf{1 6}$	(a)	because the solid is melting (1) (b)	because the gas (made during boiling) is heating up lliquid has all boiled in part D or previous part of graph (1)	1

Assessment Objectives (AO) Grid

(includes quality of written communication)

Question	AO1	AO2	AO3	Total
1	1	2		3
2(a)	4			4
2(b)	2			2
3(a)	2			2
3(b)(i)		1		1
3(b)(ii)		1		1
4(a)	1			1
4(b)(i)		2		2
4(b)(ii)	1	1		2
5(a)	1			1
5(b)		4	2	6
6(a)	1			1
6(b)		1		1
6(c)	1			1
7(a)	1			1
7(b)		2		2
7(c)		1	2	3
8(a)(i)		1		1
8(a)(ii)		1		1
8(b)		2		2
9(a)	1			1
9(b)	2			2
9(c)	3			3
10	3	3		6
11(a)		2		2
11(b)			2	2
12(a)	1			1
12(b)(i)	1	1		2
12(b)(ii)		1		1
13	4	2		6
14	3			3
15(a)	1	1		2
15(b)(i)		1		1
15(b)(ii)		1		1
15(c)	1	1		2
16(a)		1		1
16(b)		1		1
Totals	35	34	6	75

